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Abstract
Multidomain samples of ferroics (ferroelectrics, ferroelastics, and related
materials) with fixed geometrical distribution of domains can offer new
macroscopic properties required for particular applications. Two extreme cases
of such applications are defined. In domain-geometry-engineered samples
of ferroic crystals, the spatial distribution of domains and thus the spatial
distribution of tensorial properties is tuned to correspond to the k-vectors of
applied electric, optical or acoustic fields. For a given wavelength, the size,
geometry, and distribution of domains give rise to a qualitatively new kind of
response specified by the symmetry of the multidomain system. In domain-
average-engineered samples of ferroic crystals, the specimen is subdivided
into a very large number of domains, representing µ domain states where µ

is smaller than the theoretically allowed maximum number, and forming a
regular or irregular pattern. Its response to external fields is roughly described
by tensorial properties averaged over all of the domain states involved. The
effective symmetry of the domain-average-engineered system is given by a
point group H and we show how it can be determined. As an example, all
groups H are specified for domain-average-engineered samples which can
arise in a material undergoing the phase transition with symmetry change from
m3̄m to 3m.

Ferroic materials (and here we concentrate on non-magnetic materials, i.e. on ferroelectrics,
ferroelastics, and higher-order ferroics) play an essential role in a number of technical appl-
ications. In some of them, dynamic domain processes are essential (e.g. thin-film memories,
electron emitters) while in others the static distribution domains in the sample play the crucial
role. In this contribution we concentrate on the latter case and wish to specify a clear distinction
between two kinds of such static multidomain system.

We have in mind materials undergoing a structural phase transition from the parent phase
of point group G into the ferroic phase of symmetry F ⊂ G (such a material is referred to
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as belonging to the species G − F ). This leads necessarily to the possibility of a coexistence
of ν domain states [1]; ν = |G|/|F | where |A| is the order of the group A. Assuming that
domain walls are of negligible thickness compared with the size of the domains, there are two
different ways of specifying—and utilizing—properties of a multidomain sample with a fixed
distribution of domains; we propose to refer to them as domain geometry engineering and
domain average engineering, respectively. It is the purpose of this contribution to give their
definitions and in particular to specify symmetry properties of domain-average-engineered
multidomain samples.

First, we consider domain geometry engineering. Consider a multidomain sample for
which the geometry of the spatial distribution of domains and therefore that of the tensorial
material coefficients is specified. Macroscopic responses of such samples to external fields
(forces) of defined frequency are determined by this distribution. If the applied fields are
static, the response of a multidomain sample is primarily determined by the spatial distribution
of tensorial properties (domains) and of the applied field, and codetermined by the boundary
conditions along domain walls. (Only in cases of the simplest geometry of domains, namely
a single system of parallel domain walls in the case of ferroelastic species, can the latter be
eliminated.) As an example, consider a multidomain piezoelectrically active sample. The
spatial distribution of strain is

εjk(r) = dijk(r)Ei(r) (1a)

dijk(r) = d
(α)
ijk f

(α)(r) (1b)

where dijk stands for the piezoelectric tensor, the factor f (α)(r) = 0 or 1, and α denotes
the domain state: α = 1, 2, . . . , µ with µ � ν. Domain geometry engineering related to
dynamic external fields is of particular interest. The k-vector of the applied fields defines
the wavelength whose magnitude is chosen to be appropriately related to the size of domains
and whose direction is correlated with the domain geometry. For a given wavelength, the
size, geometry, and distribution of domains give rise to a qualitatively new kind of response
specified by the symmetry of the multidomain system. In the example specified above, we
expect the presence of new piezoelectric resonance frequencies. It was this case which was
suggested by Newnham et al [2], offering new resonance modes of a two-domain sample.
Recently, more involved multidomain piezoelectric systems were suggested and realized [3]
in crystals of LiNbO3 and LiTaO3. Referred to as acoustic superlattices, they can be used to
generate and detect ultrasonic waves with frequencies in the range up to several hundreds of
MHz. Another example, which has received unusual attention, is quasi-phase-matched optical
multipliers. When the conventional phase-matching condition (n2ω = nω) cannot be realized
in a particular material because of unsuitable dispersion of refractive indices, often a quasi-
phase-matched system can be constructed which offers a high integrated non-linear optical
response leading to frequency doubling [4]. This requires that a periodic domain pattern
be fabricated with a period twice the coherence length lc. Such domain-shape-engineered
systems are now widely used. An even more intricate geometry-engineered domain pattern has
been designed [5] in which two geometrically different building blocks A, B, each containing
two domains with antiparallel spontaneous polarizations, are arranged to form a Fibonacci
sequence. This leads to the possibility of second-harmonic light generation simultaneously
for several optical frequencies.

While domain-geometry-engineered systems have been repeatedly realized and theor-
etically analysed, the alternative approach to studying and utilizing multidomain ferroic
samples with static chaotic distribution of domains has only recently become extremely
attractive. By the term domain average engineering we mean a situation in which the ferroic
sample is subdivided into a very large number of domains, representing µ domain states where
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µ < ν, and forming a regular or irregular pattern. Ideally, the domain size is expected to be
much smaller than the wavelength of externally applied fields. Here, in contrast to the case
for domain shape engineering, the spatial distribution of tensorial material coefficients is not
defined or is irrelevant. The response of the sample can be to some approximation described
by tensorial properties averaged over all domain states involved. Considering, as an example,
again a sample consisting of piezoelectrically active domains, we expect for the multidomain
sample

ε̄jk = d̄ijkĒi (2a)

d̄ijk = 1

V

µ∑

α=1

d
(α)
ijk V

(α) µ < ν. (2b)

Both equations (1), (2) can be easily generalized for tensors of higher order.
Recently, a case of this character was considered [6–8] to allow discussion of piezoelectric

properties of PZN-PT single crystals poled along one of the {001} directions. Assuming that
the material went through the phase transition from G = m3̄m to F = 3m, poling along
[100] supports the coexistence of four domain states with spontaneous polarization along
the directions [111], [11̄1], [111̄], and [11̄1̄], with equal probability. In this statement, it
is assumed that the domain wall orientation (i.e. mechanical compatibility) aspects can be
neglected. In fact, in samples of ferroelastic crystals, strictly speaking, only one set of
mechanically permissible parallel domain walls is allowed [9] while in real samples walls
of various orientations coexist connected with additional elastic strains, paid for by increased
elastic energy [10].

We now discuss the symmetry of domain-average-engineered samples in which the
volumes of the domain states represented are identical, i.e. V (α) = V/µ. Such situations can
be achieved by cooling samples through their phase transition temperatures under properly
oriented stresses, electric fields or combinations of these. We introduce a classification of
domain-average-engineered ferroic samples and determine their average point symmetries.
This average symmetry is taken to be the symmetry of the subset of domain states contained
in the multidomain ferroic sample.

Consider the phase transition from G to F . The symmetry analysis is based on the coset
decomposition of the point group G with respect to its subgroup F , i.e.

G = F + g2F + g3F + · · · + gνF

where the elements gi are the coset representatives of the decomposition and g1 = 1. We
denote the ν domain states which may arise at the transition as S1, S2, . . . , Sν . The symmetry
groups Fi of the domain states and the relative orientations of the domain states and their
polarizations Pi are all determined by the coset representatives, i.e. F1 = F,Fi = giF1g

−1
i ,

Si = giS1, and Pi = giP1, i = 2, 3, . . . , ν. The closure of the group G under multiplication
implies a permutation of the cosets of the coset decomposition and in turn a permutation of
the domain states Si under elements g of G. The action of an element g of G on Si is defined
as gSi = ggiS1 = gjf S1 = gjS1 = Sj , where f is an element of F , and the domain state Si

is transformed by the element g into the domain state Sj . The action of an element g of G on
a subset of domains is denoted by g{S1, S2, . . . , Sµ} = {gS1, gS2, . . . , gSµ}.

Two subsets of domains {S1, S2, . . . , Sµ} and {S ′
1, S

′
2, . . . , S

′
µ} are said to belong to the

same class of subsets of domains if there exists an element g ofG such that g{S1, S2, . . . , Sµ} =
{gS1, gS2, . . . , gSµ} = {S ′

1, S
′
2, . . . , S

′
µ}. The symmetry group H of a subset of domains

{S1, S2, . . . , Sµ} is defined as the group of all elements g of G which leave the set invariant,
i.e. g{S1, S2, . . . , Sµ} = {S1, S2, . . . , Sµ}. The group H represents the effective symmetry of
the domain-average-engineered system consisting of the subset of domains {S1, S2, . . . , Sµ}.
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As an example, we consider the phase transition from G = m3̄m to F = 3xyzmx̄y . Here
ν = 8. The indexing of the domain states, the corresponding coset representatives of the
coset decomposition of G with respect to F , the symmetry groups, and the corresponding
polarizations in each domain state are given in table 1.

Table 1. Domain state index, coset representative, symmetry group, and polarization.

Index i Coset representative gi Fi = giF1g
−1
i Pi = giP1

1 1 3xyzmx̄y (A, A, A)

2 2x 3x̄yzmȳz (A, −A, −A)

3 2z 3xyz̄mx̄y (−A, −A, A)

4 2y 3xȳzmx̄z (−A, A, −A)

5 1̄ 3xyzmx̄y (−A, −A, −A)

6 mx 3x̄yzmȳz (−A, A, A)

7 mz 3xyz̄mx̄y (A, A, −A)

8 my 3xȳzmx̄z (A, −A, A)

All subsets of these domain states have been classified into classes as defined above. In
table 2 we list one subset of domain states from each class. Each subset is denoted by listing,
between square brackets, the indices of the domain states contained in that subset, the indices
having been given in table 1, e.g. the subset {S1, S3, S5} is denoted by [135]. In the right-hand
column is the subgroup H of elements of G which leave the corresponding subset invariant.
This table, in fact, represents the list of domain-average-engineered systems which can arise
in a material undergoing a phase transition from m3̄m to 3m.

Table 2. Representative subsets of domain states for the species m3̄m − 3m and the subgroups of
m3̄m which leave them invariant.

Representative subset Symmetry H of the subset

[1] or [2345678] 3xyzmx̄y

[13] or [245678] mxymx̄y2z

[15] or [234678] 3̄xyzmx̄y

[16] or [234578] mxmȳz2yz

[123] or [45678] 3xyzmxz

[135] or [24678] mx̄y

[136] or [24578] mxy

[1234] 4̄3m

[1235] mx̄z

[1238] 3xȳzmx̄z

[1356] 2x̄z

[1357] mxymx̄ymz

[1368] 4zmxmxy

In figure 1, for each subset listed in table 2, we schematically represent the array of domain
states and their polarizations associated with the domain states of each subset. Each domain
state is denoted by a heavy dot at a corner of the cube. This represents a polarization from
the centre of the cube to that corner—that polarization given in table 1 associated with the
corresponding domain state. Subfigure [1] denotes the single-domain state with polarization
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Figure 1. Graphical representation of the subsets of domain states whose symmetries are specified
in table 1. Points at the cube vertices represent spontaneous polarization vectors; the origin is in
the centre of the cube. The numbering is that of the indices of the domains and polarizations given
in table 1.

in the [111] direction. The figure denoted by [1368], e.g., denotes a multidomain sample in
which the following polarization vector directions are equally represented: [111], [1̄1̄1], [11̄1],
and [1̄11]. The corresponding symmetry groups of all these multidomain systems are listed,
as already pointed out, in the right-hand-side column of table 2.

Taking into account the distribution of polarization vectors and corresponding strain
tensors, one can determine which external forces should be applied in order to obtain any
of the domain-average-engineered systems listed in table 1. The trivial example is the system
[1] produced by the electric field E along [111]. The system [1368], discussed above (see
references [6–8]) will be produced by the field along [001] while the system [16] requires the
application of the field along [011]. The combination [15] requires the application of a uniaxial
stress along [111] while the system [13] calls for the application of both an electric field along
[001] and a uniaxial stress along [1̄10].

It is understood that in this symmetry approach we leave behind problems of coercive
fields and stresses as well as, as already mentioned, problems of domain coexistence connected
with their mechanical compatibility. It seems obvious that domain average engineering can
successfully lead to the formation of crystalline systems with new desired properties, in
particular in crystals where the domain size is small.

Each of the methods of domain engineering specified above can open a new vista of
materials research possibilities in the area of ferroic materials and lead to multidomain
assemblies with new desired properties.
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